
A biblioteca OpenCV lançou sua versão 4.9.0. Esta ferramenta, globalmente reconhecida e aplicada em diversos setores, foi originalmente apresentada ao mundo pela Intel no ano 2000. Hoje, conta com uma comunidade de mais de 47 mil contribuidores. E fiquei muito feliz de encontrar meu nome na lista de contribuidores deste release.
- Core Module:
DNN module patches:
- Experimental transformers support
- #24476 ONNX Attention layer support
- #24037 ONNX Einsum layer support
- #23987 OpenVINO backend for INT8 models
- #24092 ONNX Gather Elements layer
- #24378 ONNX InstanceNorm layer
- #24295 better support of ONNX Expand layer with
cv::broadcast - #24463 #24577 #24483 Improved DNN graph fusion with shared nodes and commutative operations
- #23897 #24694 #24509 New fastGEMM implementation and several layers on top of it
- #23654 Winograd fp16 optimizations on ARM
- Tests and multiple fixes for Yolo family models support
- New layers support and bug fixes in CUDA backend: GEMM, Gelu, Add
- #24462 CANN backend: bug fix, support HardSwish, LayerNormalization and InstanceNormalization
- #24552 LayerNormalization: support OpenVINO, OpenCL and CUDA backend.
Objdetect module:
- #24299 Implemented own QR code decoder as replacement for QUIRC library
- #24364 Bug fixes in QR code encoder version estimation
- #24355 More accurate Aruco marker corner refinement with dynamic window
- #24479 Fixed contour filtering in ArUco
- #24598 QR code detection sample for Android
- Multiple local bug fixes and documentation update for Aruco makers, Charuco boards and QR codes.
Mais detalhes aqui : https://github.com/opencv/opencv/releases/tag/4.9.0